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We re-examine the theoretical uncertainty in the Standard Model expression for B0- �B0 mixing. We focus on
lattice calculations of the ratio �, needed to relate the oscillation frequency of B0

s - �B
0

s mixing to Vtd. We replace
the usual linear chiral extrapolation with one that includes the logarithm that appears in chiral perturbation
theory. We �nd a signi�cant shift in the ratio �, from the conventional 1:15� 0:05 to � = 1:32 � 0:10.

1. INTRODUCTION

The Standard Model (SM) expression for �B0{
B0 mixing,

�mq =

�
G2

Fm
2

WS0
16�2mBq

�
jV �

tqVtbj2�BMq ; (1)

where q 2 fd; sg, can be used to determine the
CKM element jVtqj. This result can be compared
to other determinations to test the SM. In Eq.(1)
the quantities in parenthesis are precisely known
and �md = 0:503 � 0:006ps�1 [1]. A measure-
ment of �ms, at the percent level, is expected
at the Tevetron [2]. jVtqj is therefore dominated
by QCD uncertainties in the hadronic matrix ele-
ment,Mq = h �B0

q j[�b�(1�5)q][�b�(1�5)q]jB0
q i,

which is known to � 20% by lattice QCD [3].
Mq can be computed directly, or parameterised
as Mq = 8

3
m2

Bq
f2BqBBq and reconstructed from

separate determinations of fBq and BBq . The
latter approach is useful when studying the light
quark mass dependence. A recent discussion of
the methodologies and results is in Ref. [3].
The percent-level accuracies of �ms and �md

make it instructive to form the ratio

�ms

�md

=

����VtsVtd

����
2
mBs

mBd

�2 with �2 =
f2BsBBs

f2BdBBd

: (2)

CKM unitarity implies jVtsj � jVcbj and therefore
ÆjVtdj =

p
(ÆjVcbj)2 + (Æ�)2. Current uncertainty

on jVcbj is 2-4%, so the error in jVtdj is largely due
to the uncertainty in �2.

Conventional wisdom holds that in the ratio
�2 many systemtic uncertainties cancel, imply-
ing a precise determination of jVtdj is possible.
However, typical lattice calculations use 0:5ms �
mq � ms. To reach physical light quark masses
the results are chirally extrapolated. The usual
linear and quadratic �ts, which may be reason-
able in the region of lattice data, fail to account
for the presence of chiral logarithms predicted by
chiral perturbation theory [4]. The e�ect of these
logs was �rst explored by JLQCD [5] and included
in the error budget of � in Ref. [6]. We argue
that these logarithms change the extrapolation
and therefore the value of � in the chiral limit.
We �nd a shift in � from 1:15�0:05 to 1:32�0:1.
Further details of this work are in Ref. [7]. Fig. 1
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Figure 1. A sketch of the constraints on the apex
of the unitarity triangle with sin 2� = 0:79�0:10,
�ms = 20 ps�1 and � = 1:32�0:05 or 1:15�0:05.



shows how sin 2� and �ms=�md combine to con-
strain the apex of the unitarity triangle. The ef-
fect of a shift in � is highlighted.

2. CHIRAL LOGS AND �

The scales between 1=ms and 1=md are best de-
scribed by chiral perturbation theory. Neglecting
1=mb corrections
p
mBqfBq = � [1 +�fq] ; (3)

BBq = B [1 + �Bq] ; (4)

where �fq and �Bq contain the logarithms and
are given in Ref. [4]. The expressions for �fq and
�Bq yield

�f � 1=�fs ��fd

=(m2

K �m2

�)f2(�) �
1 + 3g2

(4�f)2

�
1

2
m2

K ln
m2

K

�2

+1

4
m2

� ln
m2

�

�2
� 3

4
m2

� ln
m2

�

�2

�
; (5)

�2B � 1=�Bs ��Bd

=(m2

K �m2

�)B2(�) � 1� 3g2

(4�f)2

�
1

2
m2

� ln
m2

�

�2

�1

2
m2

� ln
m2

�

�2

�
: (6)

f2(�) and B2(�) are low-energy constants de-
scribing dynamics at scales < ��1, f is the pion
decay constant and g2 is the B�B� coupling.
This has recently been determined by CLEO from
a measurement of the D� width. They �nd
g2D�D� = 0:35 [8] and by heavy quark symmetry,
g2B�B� = 0:35, to a good approximation. Thus,
while the e�ect of the chiral log in Bd is small,
since (1� 3g2) = �0:05, it may be signi�cant for
fBd , where (1 + 3g2) = 2:05.
Therefore, we re�ne our discussion and consider

�f = fBs=fBd . Further details of the chiral log in
Bd and the e�ect of varying g2 are in Ref. [7].
To study the light quark mass dependence of �f ,
Eq. (5) is rewritten using the Gell-Mann{Okubo
relations, as

�f (r)� 1 = m2

ss(1� r)

�
1

2
f2(�)

� 1 + 3g2

(4�f)2

�
5

12
ln(

m2

ss

�2
) + l(r)

��
; (7)

where m2
qq = rm2

ss and

l(r) =
1

1� r

�
1 + r

4
ln

�
1 + r

2

�

+
2 + r

12
ln

�
2 + r

3

�
� 3r

4
ln(r)

�
: (8)

Fig. 2 shows the function �(r) = (1�r)l(r) which
contains the chiral logarithms. Typical lattice
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Figure 2. The chiral log �(r) varying the mass
ratio r = m2

qq=m
2
ss = mq=ms, compared with a

straight line �t for 0:5 � r � 1:0. The di�er-
ence between the curve and the �t is shown in
the inset.

calculations are performed at 0:5 � r � 1:0 and
extrapolated to rd � 1=25, corresponding to the
down quark. Fig. 2 shows that the di�erence be-
tween a linear �t and one including chiral loga-
rithms is easily masked by statistical error in the
region where data are available. However, the ef-
fect of the logarithms is signi�cant at smaller r
values and is not reproduced by a linear �t.
To include these logarithms in the chiral ex-

trapolation of �f (or �f � 1) the low-energy con-
stant f2(�) is required. This can be extracted
from current lattice data 1. The usual, linear
functional form applied to �f � 1 is

�f (r) = (1 � r)Sf : (9)

1Note that the dependence on the scale � cancels in the

total.



Assuming this is sensible for r = r0 � 1, as in-
dicated by Fig. 2, and by equating Eqs. (7) and
(9)

m2

ss

2
f2(�) = Sf

+ m2

ss

1 + 3g2

(4�f)2

�
5

12
ln(

m2

ss

�2
) + l(r0)

�
; (10)

which plugged into Eq. (7) gives

�f (r) � 1 = (1� r)

�
Sf

+ m2

ss

1 + 3g2

(4�f)2
[l(r0)� l(r)]

�
: (11)

Knowing g2 from experiment and Sf from lat-
tice calculations gives a new handle on �f . To
evaluate �f (r) � 1, f = 130 MeV, g2 = 0:35 and
Sf = 0:15� 0:05 [6] are used. The parameter r0
is a remaining uncertainty. Fig. 3 shows the de-
pendence of �f on r0. Fig. 3 yields a value of
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Figure 3. The dependence of �f on r0. (1 �
rd)Sf = 0:15 � 0:05;m2

ss = 2(m2

K � m2
�); r =

rd = m2
�=m

2
ss.

�f = 1:32�0:08. The conservative error attached
to Sf leads to the larger then usual error on �f .
A similar analysis of �B is described in Ref. [7],
giving �B = 0:998�0:025. The combination leads
to

� = 1:32� 0:10: (12)

3. CONCLUSIONS

The importance of reliable chiral extrapola-
tions has become more and more widely appre-
ciated [9]. This is especially true in the quenched
approximation where many other systematic er-
rors have been controlled, leaving chiral extrap-
olation as the major uncertainty [10]. To date,
most lattice calculations of � have relied on lin-
ear (or quadratic) �ts. A combination of the
new CLEO value of the coupling with lattice data
for f2(�) allows a determination of � incorporat-
ing chiral logarithm e�ects. Reducing the uncer-
tainty in � is possible by designing lattice calcu-
lations to determine the low-energy constants.
Ultimately, unquenched lattice calculations at

light quark masses should \see" the chiral loga-
rithms. Until then, the central value and error
assigned to � should reect the uncertainty.

REFERENCES

1. F. Ronga (Belle Collaboration) and C.
Voena (BaBar Collaboration). Talks
at ICHEP02, Amsterdam, July 2002.
[http://www.ichep02.nl/].

2. K. Anikeev et al., B Physics at the Tevatron:

Run II and Beyond, arXiv:hep-ph/0201071,
http://www-theory.lbl.gov/Brun2/report/.

3. N. Yamada, these proceedings.
4. B. Grinstein et al. Nucl. Phys. B 380 (1992)

369; S.R. Sharpe, Y. Zhang, Phys. Rev. D
53 (1996) 5125; J. L. Goity, Phys. Rev. D 46
(1992) 3929.

5. JLQCD Collaboration, Nucl. Phys. Proc.
Suppl. 106 (2002) 397-399 .

6. S. Ryan, Nucl. Phys. Proc. Suppl. 106 (2002)
86-97.

7. A.S. Kronfeld and S.M. Ryan. Phys. Lett. B
543 (2002) 59. arXiv:hep-ph/0206058.

8. A. Anastassov et al. (CLEO Collaboration),
Phys. Rev. D 65 (2002) 032003.

9. Panel discussion on Chiral Extrapolation of
Lattice Observables, these proceedings.

10. A.X. El-Khadra et al., Phys. Rev. D 64 (2001)
014502; J. Shigemitsu et al., arXiv:hep-
lat/0207011.

http://www.ichep02.nl/
http://lanl.arXiv.org/abs/hep-ph/0201071
http://www-theory.lbl.gov/Brun2/report/
http://lanl.arXiv.org/abs/hep-ph/0206058
http://lanl.arXiv.org/abs/hep-lat/0207011
http://lanl.arXiv.org/abs/hep-lat/0207011

